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Abstract

Tensor factorization approaches have recently be-
come popular in knowledge graph completion
(KGC). Among them, TuckER, which introduces
Tucker decomposition in KGC, is the state-of-
the-art method. However, due to its high model
complexity, neither effectiveness nor efficiency of
TuckER is satisfied. In this paper, we improve
TuckER by automated machine learning (AutoML)
techniques. Specifically, we propose to regular-
ize the over-parameterized core tensor in Tucker by
the one-shot architecture search algorithm. The re-
sulting new factorization method not only sparsi-
fies but also improves the interpretability of core
tensor. Finally, empirical results demonstrate that
the proposed method achieves state-of-the-art per-
formance on KGC.

1 Introduction
Knowledge Graph (KG) plays an important role in exploring
and organizing knowledge base, which is applicable to many
real world scenarios Generally, real facts in KG are repre-
sented in the triplet form (head entity, relation, tail entity) or
(h, r, t) for simplicity, e.g., (Beijing, capital of, China). Given
a triplet, the crucial task in KGs is to verify whether the triplet
is a real fact or not, i.e. knowledge graph completion (KGC).
Recently, embedding approaches have been developed as a
promising method to tackle this task [Wang et al., 2017]. The
entities and relations are firstly mapped into low dimensional
vectors h, r, t, then a scoring function (SF), i.e., fph, r, tq, is
designed to indicate whether a triplet is a real fact.

In the past decade, various SFs have been proposed to im-
prove the performance of KGC, such as TransE [Bordes et al.,
2013], ConvE [Dettmers et al., 2018], DistMult [Wang et al.,
2014], ComplEx [Trouillon et al., 2017] and SimplE [Kazemi
and Poole, 2018]. Among kinds of methods, tensor factoriza-
tion models (e.g., DistMult, ComplEx and SimpIE) have been
demonstrated their superiority due to the expressive guar-
antee [Wang et al., 2018] and better empirical performance
[Lacroix et al., 2018]. More recently, another tensor-based
approach, TuckER [Balazevic et al., 2019], adapts Tucker de-
composition to serve as the SF and achieves state-of-the-art

results. Apart from learning the entity and relation embed-
dings individually, TuckER introduces an extra core tensor
to model the interaction between entity and relation embed-
dings. The core tensor enables different entities and relations
to share the same correlated interaction.

However, the efficiency and effectiveness are still far from
desired in TuckER. The core tensor in TuckER has complex-
ity of Opd2

edrq, where de and dr are dimensions of entity
and relation embedding, respectively. When the dimension
of embeddings increases, the size of core tensor increases cu-
bically, which prevents the model to achieve better perfor-
mance [Lacroix et al., 2018]. Besides, the large amount of
parameters in core tensor also makes TuckER’s training dif-
ficult since this computation cost increases dramatically and
complex models tend to overfit without sufficient data.

In comparison, tensor factorization models such as Com-
plEx, SimplE achieve relatively good performance without
introducing the dense core tensor [Lacroix et al., 2018]. The
question comes that is it essential to learn a core tensor with
so many trainable parameters to model the interaction be-
tween entity and relation embeddings? Based on the view
that ComplEx and SimplE can be regarded to have a special
core tensor with sparse constraint, we propose a novel way to
regularize the core tensor by sparse and diagonal constraints.
Inspired by the success of automated machine learning (Au-
toML) [Hutter et al., 2018], we propose an Adaptive Regu-
larizing Tucker (ART) approach to adaptively search proper
regularizer on the core tensor for any given KG. We summa-
rize the contribution as follows:
• Based on TuckER, we propose a novel regularizing method

to reduce its model complexity in order to improve
Tucker’s performance.

• Inspired by AutoML, we form the regularizing problem as
a searching problem. We implement an efficient algorithm
to adaptively search the regularized Tucker core tensor for
any given KG data.

• We test ART on the link prediction task with four popular
benchmark datasets. Experimental results show that ART
not only achieves outstanding performance in the above
tasks, but also improves efficiency.

Notation. A set of triplets S “ tph, r, tqu denotes a KG data
with h, t P E and r P R, where E and R are sets of entities and
relations, respectively. Following [Kolda and Bader, 2009],



Table 1: Summary of scoring functions. ne and nr are the number of entities and relations, respectively. x¨y represents the dot product. Note
that DistMult, ComplEx and ART utilize the same dimensionality d for entities and relations, while Tucker sets de and dr respectively. The
computation complexity is the cost of calculating the score of any given ph, r, tq.

Model Scoring Function Model Complexity Computation Complexity
DistMult xh, r, ty Opned` nrdq Opdq
TuckER G ˆ1 hˆ2 rˆ3 t G is dense Opd2

edr ` nede ` nrdrq Opd2
edrq

ART
ř

ijk Gijk ˆ1 hi ˆ2 rj ˆ3 tk Gijk is adaptively sparsified Opm3
` ned` nrdq Opm2dq
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(a) TuckER.
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(b) DistMult.
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(c) ComplEx.
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(d) ART.

Figure 1: (a) Each element in TuckER core tensor interprets the correlation between entities and relations of every embedding dimension, thus
Øpd3

`ned`nrdq; (b) and (c) illustrate DistMult and ComplEx under representations of TuckER core tensor, respectively; (d) Each element
in ART core tensor only interprets the correlation between entities and relations of embedding segmentation, hence Opm3

` ned ` nrdq.
Note that elements that are set to 0 are represented in white while gray elements are unknown.

we use lowercase boldface for vectors (e.g., h, t P Rde ),
uppercase boldface for matrix (e.g., E P Rdeˆn) and Euler
script for 3-dimensional (3D) tensor (e.g., G P Rdeˆdrˆde ).
A tensor G is diagonal when gi,j,k ‰ 0 holds if and only if
i “ j “ k. We use Iv to denote the diagonal tensor with v on
the super-diagonal and zeros elsewhere. Finally, ˆn denotes
the tensor product along the n-th mode.

2 Related Works
2.1 Tensor Factorization (TuckER) for KGC
As introduced in Section 1, TuckER encodes all interactions
between entity and relation embeddings, which enables dif-
ferent entities and relations to share the same set of knowl-
edge of a given KG. In the tensor factorization models, the
KG is represented as a third-order binary tensor X , where
each entry corresponds to a triplet, 1 indicating a real fact. In
order to learn the embeddings, TuckER proposes to decom-
pose X by Tucker decomposition [Kolda and Bader, 2009]:

X « G ˆ1 E
J ˆ2 R

J ˆ3 E
J, (1)

where G P Rdeˆdrˆde is the Tucker core tensor, E P Rdeˆ|E|

and R P Rdrˆ|R| represent embedding of entities and rela-
tions, respectively. Then the SF in TuckER is defined as:

fph, r, tq “ G ˆ1 hˆ2 rˆ3 t, (2)

where h, t P Rde and r P Rdr . Although de and dr are much
smaller than |E| or |R|, the size of G will still be quite large
when embedding size increases, which is essential to achieve
good performance [Lacroix et al., 2018]. As a result, core
tensor with large complexity are difficult to train and easy
to overfit since there may not be enough triplets to meet the
expressive power of the core tensor. We summarize the com-
parison of some advanced SFs in terms of model complexity,
computation complexity in Table 1.

2.2 Automated Machine Learning (AutoML)
Automated Machine Learning (AutoML) [Hutter et al., 2018;
Yao and Wang, 2019] has recently shown its power in design-
ing better machine learning models which can adapt to the
different tasks. Generally, two important aspects should be
considered in AutoML, i.e., 1) search space: it defines what
in principle should be searched, such as hyper-parameters or
network architectures; 2) search algorithm: it aims to effi-
ciently search in the search space. More rencently, one-shot
search (OAS) methods [Bender et al., 2018; Liu et al., 2018;
Yao et al., 2020] have been proposed to reduce the search
cost in classic AutoML techniques. Instead of searching
and training candidate models separately, OAS represents the
whole search space by a supernet [Bender et al., 2018] and
keeps weights for the supernet, thus different architectures are
forced to have the same weights (i.e., parameter-sharing).

3 The Search Problem
As in Section 2.1, the dense core tensor in TuckER not only
makes the model hard to train but also inefficient to generate
predictions. Hence, we propose to regularize the core tensor
of TuckER to reduce model complexity here.

In TuckER, every element gi,j,k in the core tensor inter-
prets the correlation among the i-th element of h, j-th ele-
ment of r and k-th element of t. However, it is quite re-
dundant for TuckER’s core tensor to evaluate the correlations
dimension by dimension. For instance, classic methods such
as DistMult, SimplE and ComplEx can be represented to have
special forms of the core tensors as in Figure 1 which are very
sparse. But they can still achieve good performance since
high dimensional KG embedding will dilute a large part of
information. This motivates us to regularize TuckER’s core
tensor by only interpreting the correlation between segmen-
tations of entities and relations.

As shown in Figure 1(d), given a head entity h P Rd,
ART first divides the embedding h into m segmentations as



h “ rh1; . . . ;hms where hi P R
d
m , and same for relation

r and tail t. Then, after delving deep into the designs of
DistMult and ComplEx in Figure 1 (b) and (c), we observe
that simple values (i.e., -1, 0 and 1) on the diagonal form of
the core tensor are fully expressive for capturing interactions.
Therefore, we propose that for each core tensor cube, we
choose the appropriate diagonal tensor from t´I1, I0, I1u as
Figure 1 (d). Note that any positive or negative value v can be
used for Iv here. We utilize 1 and ´1 for simplicity. Then,
SFs considered by ART is in Definition 1.
Definition 1. Given a tensor G P Rdˆdˆd, let δpGq divide
G into m3 cube segmentations G “ tGijku where Gijk P O.
The SF here is:

fGph, r, tq “
ÿ

ijk
Gijk ˆ1 hi ˆ2 rj ˆ3 tk. (3)

Note that each Gijk can be arbitrarily and independently
choosen from O. Here we denote all possible Gs returned by
δpGq as a space G. As introduced in Section 1, SFs design of-
ten suffer from KG diversity. Hence, in this paper, given any
KG data S, we follow AutoML and formulate the problem to
find a better G from G for S as follows:
Definition 2 (Search Problem). Given the training and val-
idation triplet sets Stra and Sval respectively, the adaptive
regularizing Tucker search problem is defined as follows:

Ḡ “ arg min
GPG

ÿ

ph,r,tqPSval

L
`

fG
`

h̄, r̄, t̄
˘

,Sval
˘

, (4)

s.t. th̄, r̄, t̄u“arg min
th,r,tu

ÿ

ph,r,tqPStra

L pfG ph, r, tq ,Straq , (5)

where Lp¨,Svalq and Lp¨,Straq measures the loss of given
embeddings on the corresponding data.

Note that we adopt multi-log loss as L because it currently
achieves the best performance [Lacroix et al., 2018]. For a
given KG data, the SF design problem has been converted
to adaptively searching a proper regularizer G with learned
embeddings th, r, tu. However, it is hard to search a proper
G from a large amount of candidates. For instance, there are
364 candidates when m “ 4. Hence, we propose to represent
the search space with a supernet, which enables an efficient
algorithm on it.

4 One-Shot Search Algorithm
Recall that ART takes a discrete view of TuckER’s core tensor
G as cube segmentations G “ tGijku, where every cube Gijk
is selected from the operation set O “ t´I1, I0, I1u. To
enable an efficient search method, we design a continuous
view as:

Gijk “
ÿ

opPO
apijk ¨ op, (6)

where op P O and apijk P t0, 1u is the weight for the p-th
choice in O. Then the SF of ART can be represented into
a supernet (a weighted bipartite graph) in Figure 2, where
apijk is the weight of the edge between operation op and Gijk.

A “ rapijks P R
m3
ˆ3 maintains all operation weights in (6).

As in Section 2.2, parameter-sharing reduces the search
time in AutoML. Hence, we propose to keep different SFs
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Figure 2: A supernet representation of ART’s search space based on
Eq.6 (with m “ 2).

share the same embeddings during the search, which allows
us to evaluate the performance in each epoch and avoid ex-
pensive full model training of candidate G. Motivated by
the recent progress in optimizing network weights with bi-
nary values [Yao et al., 2020], we also maintain two copies
of architecture weights, i.e., a continuous A to maintain the
continuous weights (apijk P r0, 1s) and a discrete Ā with bi-
nary elements (āpijk P t0, 1u), and recover Ā from A. In the
sequel, we represent the supernet of cube segmentations G
selected by the architecture weight Ā as SPpĀq and the em-
beddings th, r, tu as X. Therefore, the loss function in Def. 2
can be represented as L

`

fSPpĀqpXq,S
˘

. The above steps are
summarized in Algorithm 1.

Algorithm 1 Adaptive Regularizing Tucker (ART) one-shot
search algorithm
1: Initialize embeddings X0, architectures A0, step-sizes η and ε.
2: while not converged do
3: Get discrete architectures Āt`1 “ rā

p
ijks from At, such as

āpijk “

#

1 if p “ arg maxp̄ a
p̄
ijk

0 otherwise.
;

4: Randomly sample a mini-batch Btra from Stra;
5: Update embeddings X with gradients as: Xt`1 Ð Xt ´

η ∇Xt

ř

ph,r,tqPBtra
LpfSPpĀt`1q

pXtq,Btraq;
6: Randomly sample a mini-batch Bval from Sval;
7: Update the continuous architecture A as: At`1 Ð At ´

ε ∇At

ř

ph,r,tqPBval
L
`

fSPpAtqpXt`1q,Bval

˘

;
8: end while
9: Derive Ā˚ from the final searched A˚;

10: Get embeddings X˚ by training Ā˚ from scratch to conver-
gence.

5 Experiments
Following previous KGC models [Bordes et al., 2013;
Trouillon et al., 2017; Kazemi and Poole, 2018; Balaze-
vic et al., 2019], we mainly conduct experiments on four
public benchmark data sets: WN18 [Bordes et al., 2013],
WN18RR [Dettmers et al., 2018], FB15k [Bordes et al.,
2013], FB15k237 [Toutanova and Chen, 2015]. WN18RR
and FB15k237 are variants of WN18 and FB15k respectively
by removing duplicate and inverse relations.

We test the performance on the link prediction task and
adopt the classic metrics [Bordes et al., 2013; Wang et al.,
2014]: MRR and Hit@10. We compare the proposed ART
(withm “ 4) with the popular KGC models, i.e. RotatE [Sun
et al., 2019], ConvE [Dettmers et al., 2018], HolEX [Xue et
al., 2018], QuatE [Zhang et al., 2019], DistMult [Wang et al.,



Table 2: Comparison of the best SFs identified by ART and the state-of-the-art SFs on the link prediction task.

model WN18 WN18RR FB15k FB15k237
MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

RotatE [Sun et al., 2019] 0.949 95.9 0.476 57.1 0.797 88.4 0.297 48.0
ConvE [Dettmers et al., 2018] 0.943 95.6 0.430 52.0 0.657 83.1 0.325 50.1

HolEX [Xue et al., 2018] 0.938 94.9 - - 0.800 88.6 - -
QuatE [Zhang et al., 2019] 0.950 95.9 0.488 58.2 0.833 90.0 0.357 55.3

DistMult [Wang et al., 2014] 0.821 95.2 0.443 50.7 0.817 89.5 0.349 53.7
ComplEx [Trouillon et al., 2017] 0.951 95.7 0.471 55.1 0.831 90.5 0.347 54.1

SimplE [Kazemi and Poole, 2018] 0.950 95.9 0.48 55.5 0.830 90.3 0.350 54.4
TuckER [Balazevic et al., 2019] 0.953 95.8 0.470 52.6 0.795 89.2 0.358 54.4

ART (ours) 0.950 95.9 0.489 56.8 0.840 90.8 0.360 55.0

2014], ComplEx [Trouillon et al., 2017], SimplE [Kazemi
and Poole, 2018] and TuckER [Balazevic et al., 2019].

The effectiveness comparison of ART with the other
methods are in Table 2. Firstly, it is clear that TuckER
achieves good performance among classic SFs. Further-
more, ART achieves the state-of-the-art performance com-
pared with TuckER. This is because that ART regularizes the
dense core tensor to less complexity so that ART’s core tensor
is easy to train and unlikely overfit.

We summarize the running time of two steps of ART and
other SFs on 4 data sets in Table 3. Note that ART sets em-
bedding dimensions to 512 in search procedure for all data
sets. As for trained-from-scratch, we set embeddings dimen-
sions for ART, TuckER and DistMult at 1024. It is obvi-
ous that ART can extremely reduce the time cost compared
with TuckER. The searched SF training time of ART is a lit-
tle longer than the simplest tensor-based method, DistMult.
Moreover, ART search takes a bit more time compared with
stand-alone training because it needs to forward and back-
ward loss for updating architectures in search. Gennerally,
the time cost of ART is cheap.

Table 3: Running time (in hours) analysis of SFs on single GPU.

data set ART TuckER DistMultSearch Training
WN18 5.89 4.73 25.42 1.9

WN18RR 3.12 3.04 18.70 0.42
FB15k 13.61 10.79 38.67 8.36

FB15k237 5.66 3.86 21.33 2.6
In addition, we only show two searched SFs over two data

sets under m “ 2 in Table 4 due to space limits. It indicates
that ART can search different G for various KGs.

Table 4: The example of searched G on WN18RR with m “ 2.
data sets G111 G112 G121 G122 G211 G212 G221 G222

WN18RR I1 I1 ´I1 I0 I1 ´I1 I1 ´I1

FB15k237 I1 ´I1 I1 I1 I0 ´I1 ´I1 I1
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J. Welbl, S. Riedel, and G. Bouchard. Knowledge graph comple-
tion via complex tensor factorization. JMLR, 18(1):4735–4772,
2017.

[Wang et al., 2014] Z. Wang, J. Zhang, J. Feng, and Z. Chen.
Knowledge graph embedding by translating on hyperplanes. In
AAAI, 2014.

[Wang et al., 2017] Q. Wang, Z. Mao, B. Wang, and L. Guo.
Knowledge graph embedding: A survey of approaches and ap-
plications. TKDE, 29(12):2724–2743, 2017.

[Wang et al., 2018] Y. Wang, R. Gemulla, and H. Li. On multi-
relational link prediction with bilinear models. In AAAI, 2018.

[Xue et al., 2018] Y. Xue, Y. Yuan, Z. Xu, and A. Sabharwal. Ex-
panding holographic embeddings for knowledge completion. In
NeurIPS, pages 4491–4501, 2018.

[Yao and Wang, 2019] Q. Yao and M. Wang. Taking human out of
learning applications: A survey on automated machine learning.
Technical report, arXiv preprint, 2019.

[Yao et al., 2020] Q. Yao, J. Xu, W. Tu, and Z. Zhu. Differentiable
neural architecture search via proximal iterations. In AAAI, 2020.

[Zhang et al., 2019] S. Zhang, Y. Tay, L. Yao, and Q. Liu. Quater-
nion knowledge graph embeddings. In NeurIPS, pages 2731–
2741, 2019.


